Selection diagram

product option
sold separately as accessory

Code structure

FD 1899-F1GM2K50T6V200

Housing	
FD	metal, one conduit entry
FP	technopolymer, one conduit entry

Lock key coding

one standard key coding (371)
V200 up to 8 different key codings

Ambient temperature

$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ (standard)

T6 $-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$

Pre-installed cable glands or connectors no cable gland or connector (standard)
K23 cable gland for cables $\varnothing 6 \ldots 12 \mathrm{~mm}$

K50 M12 metal connector, 5-pole

For the complete list of possible combinations please contact our technical department.

Threaded conduit entry

M2 M20x1.5 (standard)
PG 13.5

Contact type

silver contacts (standard)
G silver contacts with $1 \mu \mathrm{~m}$ gold coating

G1
silver contacts, $2.5 \mu \mathrm{~m}$ gold coating (not for contact blocks $20,21,22,28,29,30,33,34$)

Main features

- Metal housing or technopolymer housing, one conduit entry
- Protection degree IP67
- 9 contact blocks available
- 6 stainless steel actuators available
- Versions with assembled M12 connector
- Versions with gold-plated silver contacts
- Strong actuator locking (1000 N)
- Release of the actuator by key

Quality marks:

IMQ approval:	EG605
UL approval:	E131787
CCC approval:	2007010305230000
EAC approval:	RU C-IT.УT03.B.00035/19

Technical data

Housing

FP series housing made of glass fibre reinforced technopolymer, self-extinguishing, shock-proof and with double insulation:
FD series: metal housing, baked powder coating.
Metal head, baked epoxy powder coating.
One threaded conduit entry:
Protection degree:

M20x1.5 (standard)

IP67 acc. to EN 60529 with cable gland of equal or higher protection degree

General data

SIL (SIL CL) up to:
Performance Level (PL) up to:
Interlock with mechanical lock, coded:
Coding level:
Safety parameters:
$B_{10 D}$:
Mission time:
Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
Max. actuation speed:
Min. actuation speed:
Maximum force before breakage $F_{1 \text { max: }}$
Max. holding force $F_{\text {zh }}$:
Max. clearance of the actuator:
Actuator extraction force:
Tightening torques for installation:
Wire cross-sections and
wire stripping lengths:

SIL 3 acc. to EN 62061
PL e acc. to EN ISO 13849-1
type 2 acc. to EN ISO 14119 low acc. to EN ISO 14119

1,000,000 for NC contacts 20 years
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ (standard)
$-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ (T6 option)
3600 operating cycles/hour
500,000 operating cycles
$0.5 \mathrm{~m} / \mathrm{s}$
$1 \mathrm{~mm} / \mathrm{s}$
1000 N acc. to EN ISO 14119
770 N acc. to EN ISO 14119
4.5 mm

30 N
see page 339
see page 357

In compliance with standards:

IEC 60947-5-1, IEC 60947-1, IEC 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 50581, BG-GS-ET-15, UL 508, CSA 22.2 No. 14.

Approvals:

EN 60947-5-1, UL 508, CSA 22.2 No.14, GB/T14048.5-2017.

Compliance with the requirements of:

Machinery Directive 2006/42/EC, EMC Directive 2014/30/EU, RoHS Directive 2011/65/EU. Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

. If not expressly indicated in this chapter, for correct installation and utilization of all articles see the instructions given on pages 337 to 350.

Electrical data			Utilization category
	Thermal current ($I_{t h}$): Rated insulation voltage (U_{i}): Rated impulse withstand voltage ($\mathrm{U}_{\text {imp }}$): Conditional short circuit current: Protection against short circuits: Pollution degree:	10 A 500 Vac 600 Vdc 400 Vac 500 Vdc (contact blocks 20, 21, 22, 28, 29, 30, 33, 34) 6 kV 4 kV (contact blocks 20, 21, 22, 28, 29, 30, 33, 34 1000 A acc. to EN 60947-5-1 type aM fuse 10 A 500 V 3	Alternating current: AC15 $(50 \div 60 \mathrm{~Hz})$ U_{e} (V) 250 400 500 I $_{e}(\mathrm{~A})$ 6 4 1 Direct current: DC13 $U_{e}(\mathrm{~V})$ 24 125 250 $\mathrm{I}_{\mathrm{e}}(\mathrm{A})$ 3 0.55 0.3
	Thermal current $\left(1_{t n}\right)$: Rated insulation voltage (U_{V}): Protection against short circuits: Pollution degree:	$\begin{aligned} & 4 \mathrm{~A} \\ & 250 \mathrm{Vac} 300 \mathrm{Vdc} \\ & \text { type gG fuse } 4 \mathrm{~A} 500 \mathrm{~V} \\ & 3 \end{aligned}$	
	Thermal current $\left(l_{t n}\right)$: Rated insulation voltage (U_{V}): Protection against short circuits: Pollution degree:	2 A 30 Vac 36 Vdc type gG fuse 2 A 500 V 3	Alternating current: AC15 $(50 \div 60 \mathrm{~Hz})$$U_{e}$ (V) $\quad 24$I $_{e}$ (A) $\quad 2$Direct current: DC13U_{e} (V) 24 $I_{e}(A)$ 2

Features approved by IMQ

Rated insulation voltage (U_{i}): 500 Vac	
	400 Vac (for contact blocks 20, 21, 22, 33, 34)
Conventional free air thermal current ($\left.l_{\text {th }}\right)$: 10 A	
Protection against short circuits:	type aM fuse 10 A 500 V
Rated impulse withstand voltage ($\mathrm{U}_{\text {imp }}$): 6 kV	
	4 kV (for contact blocks 20, 21, 22, 33, 34)
Protection degree of the housing:	IP67
MV terminals (screw terminals)	
Pollution degree:	3
Utilization category:	AC15
Operating voltage (U_{e}):	$400 \mathrm{Vac}(50 \mathrm{~Hz})$
Operating current (I_{e}):	3 A

Operating current $\left(\mathrm{I}_{\mathrm{e}}\right)$:
Forms of the contact element: $Z b, Y+Y, Y+Y+X, Y+Y+Y, Y+X+X$
Positive opening contacts on contact blocks 18, 20, 21, 22, 28, 29, 30
In compliance with standards: EN 60947-1, EN 60947-5-1, fundamental
requirements of the Low Voltage Directive 2014/35/EU.
Please contact our technical department for the list of approved products.

Features approved by UL

Electrical Ratings:	O 300 pilot duty ($69 \mathrm{VA}, 125-250 \mathrm{~V} \mathrm{dc}$) A600 pilot duty ($720 \mathrm{VA}, 120-600 \mathrm{~V} \mathrm{ac}$)
Environmental Ratings:	Types $1,4 \mathrm{X}, 12,13$

Use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor and wire size range 12, 14 AWG, stranded or solid. The terminal tightening torque of 7.1 lb in $(0.8 \mathrm{Nm})$.
For FP series: the hub is to be connected to the conduit before the hub is connected to the enclosure.

Please contact our technical department for the list of approved products.

Description

This type of switches is applied on fences or guards where entrance is allowed to authorized personnel only. They have been designed to control large protected areas where operators may physically enter. Supplied with a strong lock, the actuator can be removed from the head only after a complete rotation $\left(180^{\circ}\right)$ of the locking key. The electrical contacts are switched as the key is turned; the actuator is released only after the NC contacts have been positively opened. Contacts activated by the lock are reset to the initial position only with inserted actuator and with the key in the locking position. It is impossible to rotate the key when the key locking device is unlocked and the actuator is removed (C state). These switches are considered interlocks with guard locking in accordance with ISO 14119, and the product is marked on the side with the symbol shown.

Head and release devices with variable orientation

The head can be quickly turned to each of the four sides of the switch by unfastening the two fastening screws.
The auxiliary key release device can be rotated in 90° steps as well. This enables the switch to assume 32 different configurations.

Protection degree IP67

These devices are designed to be used in the toughest environmental conditions and they pass the IP67 immersion test acc. to EN 60529. They can therefore be used in all environments where maximum protection degree of the housing is required.

Holding force of the unlocked actuator

The inside of each switch features a device which holds the actuator in its closed position. Ideal for all those applications where several guards are unlocked simultaneously, but only one is actually opened. The device keeps all the unlocked guards in their position with a retaining force of approx. 30 N , stopping any vibrations or gusts of wind from opening them.

Laser engraving

All devices are marked using a dedicated indelible laser system. These engravings are therefore suitable for extreme environments too. Thanks to this system that does not use labels, the loss of plate data is prevented and a greater resistance of the marking is achieved over time.

Adjustment range

The actuation head of this switch features a wide range of travel. In this way the guard can oscillate along the direction of insertion (4.5 mm) without causing unwanted machine shutdowns. This wide range of travel is available in all actuators in order to ensure maximum device reliability.

Contact block

Contact blocks with captive screws, finger protection, twin bridge contacts and double interruption for higher contact reliability.

Extended temperature range

$-40^{\circ} \mathrm{C}$
These devices are also available in a special version suitable for an ambient operating temperature range from $-40^{\circ} \mathrm{C}$ up to $+80^{\circ} \mathrm{C}$.
They can therefore be used for applications in cold stores, sterilisers and other equipment with low temperature environments. The special materials used to produce these versions retain their characteristics even under these conditions, thereby expanding the installation possibilities.

Safety screws for actuators

As required by ISO 14119, the actuator must be fixed immovably to the guard frame. Pan head safety screws with one-way fitting are available for this purpose. With this screw type, the actuators cannot be removed or tampered by using common tools. See accessories on page 332.

Operation

The switch is fastened to the machine body（A），while the stainless steel actuator is fastened to the guard（B）．Once installed，the switch will firmly lock the actuator．To remove the actuator，the lock must be unlocked by turning the key（C）．When the actuator is removed，the key cannot be put into the initial position anymore．The example shows how the contacts of the lock and actuator are switched and how the switch can be installed within the machine in such a way that only the release device is visible from the outside．

Operating phases

Limits of use

Do not use where dust and dirt may penetrate in any way into the head and deposit there．Especially not where powder，shavings， concrete or chemicals are sprayed．Adhere to the ISO 14119 requi－ rements regarding low level of coding for interlocks．Do not use in environments with presence of explosive or flammable gas．In these case use ATEX products（see dedicated Pizzato catalogue）．Attention！ These switches alone are not suitable for applications where opera－ tors may physically enter the dangerous area，because an eventual closing of the door behind them could restart the machine operation． In these cases the actuator entry locking device VF KB1 shown on page 106 must be used．

Contact positions related to switch states

Operating state		$\underset{\text { A }}{\substack{\text { state }}}$	$\begin{gathered} \text { state } \\ \text { B } \end{gathered}$	$\begin{gathered} \text { state } \\ \text { C } \end{gathered}$
Actuator		Inserted and locked	Inserted and released	Extracted
Lock		Closed	Open	Open
Contact blocks				
FD 1899 1NO +1 NC controlled by the lock	$\begin{aligned} & \stackrel{C}{\odot} \\ & \stackrel{\sigma}{6} \end{aligned}$	$\begin{aligned} & 11-\left\llcorner_{12}\right. \\ & 23-24 \\ & 24 \end{aligned}$	${ }_{21}^{11 \boldsymbol{工}_{24}}$	${ }_{23}^{11 \mathbf{エ}_{24}}$
FD 2099 1NO +2 NC controlled by the lock	\cdots \cdots \cdots	$\begin{gathered} { }_{11} \boldsymbol{L}_{12} \\ { }_{21}-\boldsymbol{\iota}_{22} \\ -34 \end{gathered}$		$\begin{aligned} & 11 \longrightarrow 12 \\ & 21 \longrightarrow 22 \\ & 33 \longrightarrow 34 \end{aligned}$
FD 2199 3NC controlled by the lock	$$	${ }_{11}$	$\begin{aligned} & 11 \underset{\sim}{\sim} 12 \\ & 21 \underset{\sim}{\sim} \\ & 31 \sim \end{aligned}$	$\begin{aligned} & 11 \underset{\sim}{\sim} 12 \\ & 21 \underset{\sim}{\sim} \\ & 31 \\ & \hline-32 \end{aligned}$
FD 2299 2NO＋1NC controlled by the lock	\lessdot \odot \backsim	$\begin{aligned} & 11 \longrightarrow \boldsymbol{ธ}_{12} \\ & 23 \longrightarrow-24 \\ & 33-\quad 34 \end{aligned}$		
FD 2899 1NO +1 NC controlled by the lock 1NC controlled by the actuator		$\begin{aligned} & 11-\boldsymbol{L}_{12} \\ & 21-\boldsymbol{\iota}_{22} \\ & \mathbf{3 3}-34 \end{aligned}$	$\begin{aligned} & 11 \boldsymbol{L}_{22} \\ & 21 \mathbf{L}_{32} \end{aligned}$	$\begin{aligned} & 11 \underset{\sim}{-12} \\ & 21 \underset{\sim}{\sim} \\ & 33 \\ & \hline \boldsymbol{\Sigma} \end{aligned}$
FD 2999 2NC controlled by the lock 1NC controlled by the actuator		${ }_{11}{ }_{21} \boldsymbol{\Sigma}_{12}$		
FD 3099 1NC controlled by the lock 2NC controlled by the actuator	\bigodot ■f ■解		$\begin{aligned} & 11 \boldsymbol{L}_{22} \\ & 21 \\ & { }_{31} \\ & \mathbf{L}_{3} \end{aligned}$	$\begin{aligned} & 11 \begin{array}{r} \mathbf{-} \\ 21 \\ \mathbf{-} \\ 31 \\ \hline-32 \end{array} \end{aligned}$

[^0]| | | Technopolymer housing | Metal housing |
| :---: | :---: | :---: | :---: |
| Contact type:
 \mathbf{L} = slow action | | Without actuator, supplied with two keys | Without actuator, supplied with two keys |
| $\square=$ | action | | |
| 18 | L | FP 1899-M2 \rightarrow ¢ $¢ 1 \mathrm{NO}+1 \mathrm{NC}$ | FD 1899-M2 \rightarrow ¢ $1 \mathrm{NO}+1 \mathrm{NC}$ |
| | | | $C^{1}{ }_{23,24}^{11.12} \underbrace{0^{\circ}{ }_{95^{\circ}} \Theta^{180^{\circ}}}_{120^{\circ}}$ |
| 20 | L | FP 2099-M2 \rightarrow - ${ }^{\text {1 }}$ NO+2NC | FD 2099-M2 \rightarrow ¢ ${ }^{\text {1 }}$ NO+2NC |
| | | | |
| 21 | L | FP 2199-M2 \quad T $\Theta 3 N C$ | FD 2199-M2 \quad U $\Theta 3 N C$ |
| | | | $\underset{\substack{95^{\circ}}}{\substack{11-1200^{\circ} \\ 3132^{\circ}}}$ |
| 22 | \square | FP 2299-M2 \rightarrow ¢ $¢$ 2NO+1NC | FD 2299-M2 \leftrightarrow ¢ ${ }^{\text {2NO}}+1 \mathrm{NC}$ |
| | | | |
| 28 | \square | FP 2899-M2 \rightarrow ¢ ${ }^{\text {1 }}$ NO+2NC | FD 2899-M2 \rightarrow ¢ ${ }^{\text {1 }} \mathrm{NO+2NC}$ |
| | | | |
| 29 | \square | FP 2999-M2 H $^{\text {¢ }}$ 3NC | |
| | | | |
| 30 | \square | FP 3099-M2 $⿴ 囗 3 \mathrm{~T}$ (| FD 3099-M2 \rightarrow Tr Θ NC |
| | | | |
| 33 | \square | FP 3399-M2 \rightarrow ¢ ${ }^{\text {1 }} \mathrm{NO}+1 \mathrm{NC}$ | FD 3399-M2 \rightarrow ¢ Θ 1NO+1NC |
| | | | $C^{-131.22}{ }^{13,14} \underbrace{0}_{120^{\circ}} 9^{95^{\circ}} \Theta^{180^{\circ}}$ |
| 34 | \square | FP 3499-M2 Θ - ${ }^{\text {N }}$ N | FD 3499-M2 \rightarrow - ${ }^{\text {NC }}$ |
| | | $\left.C_{21-122}^{11,12}\right)_{95^{\circ}} \quad \Theta^{180^{\circ}}$ | $\sigma^{101122}{ }^{1 / 22} \quad 95^{\circ} \quad \oplus_{180^{\circ}}$ |
| Actuating force | | $30 \mathrm{~N}(40 \mathrm{Ne}$) | $30 \mathrm{~N}(40 \mathrm{~N} \Theta)$ |

Legend: Θ With positive opening according to EN 60947-5-1, W interlock with lock monitoring acc. to EN ISO 14119

How to read travel diagrams

IMPORTANT:

The state of the NC contact (Cm) refers to the switch with inserted actuator and locked lock. In safety applications, actuate the switch at least up to the positive opening travel shown in the travel diagrams with symbol Θ. Actuate the switch at least with the positive opening force, reported in brackets below each article, next to the actuating force value.

Stainless steel actuators

IMPORTANT: These actuators can be used only with items of the FD, FP, FL, FC, and FS series (e.g. FD 1899-M2).
Low level of coding acc. to EN ISO 14119.

The actuator can flex in four directions for applications where the guard alignment is not precise.

Description

Actuator adjustable in two directions for guards with reduced dimensions.

Actuator adjustable in one direction for guards with reduced dimensions.

Universal actuator VF KEYF8

IMPORTANT: These actuators can be used only with items of the FD, FP, FL, FC, and FS series (e.g. FD 1899-M2).
Low level of coding acc. to EN ISO 14119.

Jointed actuator for guards with poor alignment, adjustable in two dimensions for small doors; can be mounted in various positions. The metal fixing body has two pairs of bore holes; it is provided for rotating the working plane of the actuator by 90°.

Accessories

[^0]: The key can be extracted from the lock with locked or released actuator．

